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Nonconforming combinations are provided for solving interface problems of elliptic equa-
tions. In these approaches, the Ritz—Galerkin method with particular solutions is used for the
part of a solution domain where there are interface singular points; and the conventional finite
element method is used for the rest of the solution domain. In addition, admissible functions
chosen are constrained to be continuous only at the element nodes on the common boundary
of the subdomains. Error bounds are derived in the Sobolev norms, and numerical
experiments are given for solving a model interface problem of the equation, —du+u=0.
Moreover, a significant coupling relation, L + 1 = O(|In 4]}, is found for interface problems by
using the nonconforming combinations, where (L+ 1) is the total number of particular
solutions used in the Ritz—Galerkin method, and / is the maximal boundary length of
triangular elements in the finite element method.  © 1989 Academic Press, Inc.

1. INTRODUCTION

Efficient numerical methods for the solution of mathematical and physical
problems with singularities are significant because the conventional finite element
method and finite difference method fail to deal with them. For angular singularity
problems, there have appeared the conformal transformation methods of Whiteman
and Papmichael [21], the infinite grid refinement method of Thatcher [20] and
Gregory et al. [8], and the coupling method of the boundary and element methods
of Zienkiewicz et al. [26]. But the most promising approaches are those that use
the singular functions near singular points. In fact, Fix er al. [7] and Strang and
Fix [19] provide an innovative method by adding the singular functions into
piecewise interpolation polynomials in the standard finite element methods, but
Wigley [23,24] present an inverse approach by subtracting singular expansions
from the solutions obtained by the finite element methods. Our question, however,
is: should we use only the singular functions in the neighbourhood of the singular
points? Certainly we should. In fact, the idea that uses only the singular functions
in a subdomain can be easily performed in the nonconforming combined methods
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[13-15] as long as the singular functions have been known. In the subdomains
including angular singular points, only particular solutions (singular or analytic)
are used; in other subdomains without singularities, the conventional finite element
methods are still used as usual. Since a nonconforming strategy is employed for
matching the Ritz-Galerkin method and the finite element method, the nonconfor-
ming combination is referred to. In this paper the Ritz—Galerkin method is referred
to if a subspace of particular solutions is used, and the finite element method if a
subspace of piecewise linear functions is used. Besides the combined approaches,
other treatments can be also found in Zielinski and Zienkiewicz [25], Li [15], and
Li et al. [16] where piecewise singular and analytic functions are applied to whole
solution domains, instead of the finite element method completely. In this paper, we
will focus on interface problems only by the nonconforming combinations and will
provide some new numerical techniques. For the interface problems of elliptic equa-
tions, Kellogg [10-12] and Babuika [1] provide a theoretical base for their
singularity property (also see Birkhoff [4] and Strang and Fix [19]). The
singularity at the corners of interfaces will reduce the precision of numerical solu-
tions by the traditional finite element method or finite difference method. Hence,
Han [9] presents the infinite element method which yields a satisfactory numerical
solution for interface problems of the Laplace equation. But the method of Han
cannot be applied to other elliptic equations, such as

—Au+u=0, (1.1)

We now introduce the nonconforming combinations for Eq. (1.1) which consists
of three steps as follows:

1. Suppose that there exists only one singular point of interfaces. The solution
domain is then divided into two subdomains. One of them includes the singular
point, and it is called the singular subdomain.

2. On the singular subdomain, the Ritz-Galerkin method is used with
particular solutions of interface problems as admissible functions. On the other
subdomain the finite element method is used with piecewise linear interpolation
functions as admissible functions. We notice that when the intersection angles of the
interfaces are @ =n/n, n=2, 3, ..., some analytic eigenfunctions have to be added to
Kellogg’s singular eigenfunctions, in order to form a complete set of eigenfunctions
(Li [15]).

In addition, these admissible functions are constrained to be continuous only
at the element nodes on the common boundary of two subdomains where two
different methods (i.e., the Ritz-Galerkin method and the finite element method)
are used simultaneously. This approach is nonconforming because the admissible
functions are not continuous on the whole common boundary.

3. Finally, a system of algebraic equations can be obtained. Since its
coefficient matrix is positive definite and symmetric, the numerical solutions of the
combinations are easily solved.



290 ZI-CAI LI

We shall provide error bounds of numerical solutions. Based on error analyses,
a significant coupling relation such as that of Li [14]:

L+1=0(lnh|). (1.2)

is also proved for interface problems of (1.1), where (L + 1) is the total number of
particular solutions in the singular domain, and 4 is the largest boundary length of
triangular elements used in the finite element method.

Numerical experiments using coupling relation (1.2) are carried out for a model
problem of interfaces. In fact, only six terms of particular solutions are required for
a good approximate solution. In summary, both theoretical analyses and numerical
results in this paper will again show outstanding advantages of the nonconforming
methods in solving interface problems provided that the asymptotic expansions of
true solutions near the interface singularities can be found.

2. INTERFACE PROBLEM

Consider the interface problem of two dimensions (Fig. 1):

pH(—du+u)=0, in Q+, (2.1a)

p (—4du+tu)=0, in Q-, (2.1b)
ou* ou~ —

ut=u", p*—an—= ’W on Iy, (2.1c)

u=g(x, y), on 4%, (2.1d)

FiG. 1. An interface problem.
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where 4 =0%/0x?+ 0%/dy?, the solution domain Q (=Q*UQ7) is a convex
polygon, the interface boundary Iy (=Q* n27) is made up of the piecewise
straight lines 4BC, with an intersection angle @, n is the normal to Ly, ut=ulg-,
p* are positive constants, and the function g(x, y) is a sufficiently smooth function
on 0Q.

The solutions near the interface singularity B have expansions:

u(r, 6)= Z D.1,(r),.(6), (2.2)

where u,<p,,,, D; are expansion coefficients, I,(r) are the Bessel functions for a
purely imaginary argument, defined by (Watson [221])

© 1 r 2k+pu
L= L Fer DIt i i D <§) (232)
or
—__ﬁ’:)#_. ! ey _ 2\ 172
1,‘(r)_1,(%)”“%)}”ei (1= 2y V2 dy, (2.3b)

and ¢,(0) are complete orthogonal eigenfunctions of a Sturm-Liouville system,
which fall into symmetric and anti-symmetric groups.
Kellogg [10-12] provides two groups of eigenfunctions.

1. Symmetric eigenfunctions:

cos 4.0, 18] < ©/2,
(0)= 4 .
¢4(9) {&j cos ji(n—0), |6)>8)2, 24)
where the constants are
. , 0 ) e
d;=cos j; ?/cos A, (1:—-2—>, (2.5)
and ji; satisfy the equations
e .. [ 8
p tguj5+p tg 4, n—i =0. (2.6)
2. Antisymmetric eigenfunctions:
_ sin 1,0, 18] < ©/2,
(§) = 7
¢i0) {&j sini(m—0),  16]>0/2, 27)
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where the constants are
o’zj=sinﬁj—§—/sinﬁj (n—%—), (2.8)
and g; satisfy
pt tgﬁj§+p’ tgﬂj<n——g>=0. (2.9)
When the intersection angles of interfaces are

O =1/n, n=213,,., (2.10)

some additional eigenfunctions have to be added to Kellogg’s eigenfunctions of the
Sturm-~Liouville system so that a complete set of eigenfunctions is formed. These
additional eigenfunctions are [157:

1.  Symmetric eigenfunctions:

$2,4(8) = cos 2nk0, 0<b<m, 2.11)
and
cos n(2k + 1)8, 18| < ©/2 =n/2n,
0)= §|
Prie+ 1(0) {(p_/p")cos n(2k+1)8,  |6]>6/2=n/2n, (2.12)
where k=0,1, ....
2. Antisymmetric eigenfunctions:
sin 2nk6, |8 < ©/2 =n/2n,
= 1
P2l 0) {( p-/p*)cos2nkd, 6] >6/2=n/2n, (2.13)
and
P2k~ 1)(0) =sin n(2k — 1)06, 0<0<m, (2.14)
where k=1,2, ...

A typical interface problem as in Fig. 2 has been discussed in Strang and Fix
{19], where the solution domain is a square domain (—1<x<1, —1<y<1), and
Q- is a small square domain (—3<x<3, —3<y<3). There then exist four
singular points of interfaces with the intersection angles

O =n/2, (2.15)

ie, n=2 for @ =n/n. In this case, corresponding complete eigenfunctions are:
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Fic. 2. An interface problem on the solution domain £.

1. Symmetric eigenfunctions: Kellogg’s functions (2.4) with the constants 4,
(2.5), and

figje 1 =4 +a* (2.16)

4 [3+p~/p™
* U A N
o —narctg 133 2.17)

as well as the additional functions

where

@4 (0) =cos 4k0, 0<0<m, (2.18)
and
_ fcos 2(2k +1)8, 101 < /4,
¢2(2k+”(0)_{(p“/p+)cos 22k+1)6, 0] >n/4, (2.19)
where k=0, 1, ....

2.  Antisymmetric eigenfunctions: Kellogg’s functions (2.7) with the constants
a;, (2.8), and

Aajryz1=4+2ta* (2.20)
as well as the additional functions

sin 4k86, |8] < w/4,

Pul8) = {(p-/pwsin 6, 16>/, (221)
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and
¢2(2k71J(9)=Sin2(2k—1)0, OQBSR,
where k=1, 2, ...

Now, denote the minimal nonzero eigenvalue ., as

Henin = MIN 4;. (2.22)
#i>0

Then, when @ =1/2,
Umin =min[a*, 2 —*], (2.23)

where a* is defined by (2.17), and also when p* # p—,
< thmn < L. (2.24)

Moreover, for the symmetric cases with u,,;, =a*, Ineq. (2.24) holds true if and
only if

+

pr<p. (2.25)

In fact, the main part of singular expansions of u near the singularity B is
u=0(I, (r)). (2.26)
On the other hand, we have from (2.3b)

1, (r)<a, erimn (2.27)

Mmin
with a constant

" !

_— _ 212
Sy epwyd B A (2.28)

Hence u = O(r#~). Also for (2.24), the derivatives have

Ju

—{=0(r*===1) 5 o0 as r—0.
or

This shows the singularity property of solutions near the singular point B for
interface problem (2.1).
In practical application, we prefer the solution expansions with scale factors:

u=¥ D, 4 6), o0<r<R and O0<O<n  (229)
i =0

"L(R)
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to (2.2), where R is a radius, which may be chosen as the inscribed radius of Q
shown in Fig. 1. Clearly, when r = R, the solution is

W(R0)=Y Dig,(0), O<b<m. (2.30)
i=0

Then the coefficients D, can be represented from the orthogonality of eigenfunctions

$,(0):
2n pu(R 9)¢ (6) db

where the function is
_fp. 181<6/2,
=10 lsen 232)

3. NONCONFORMING COMBINATIONS

We shall use the nonconforming combination of the Ritz-Galerkin and finite
element methods for solving the interface problem (2.1).

Divide the solution domain € of Fig. 3 into 2, and Q, by a circle /z. (r = R*).
Let €2, be the disk: r < R* and 0 <0< 2xn, and Q, the rest of Q. We notice that the
common boundary /. is not the interface boundary I,.

FiG. 3. A division of the solution domain.
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Since ue H3(R2,) but u¢ HX(Q,) for p* # p—, we use the finite element method
with a subspace of piecewise linear functions in €, and the Ritz—Galerkin method
with a subspace of particular solutions in €, for the interface problem. In fact, the
subdomain Q, is again divided into many small triangle elements 4, (see Fig. 3).
Let Q"={J,4,, then Q"~Q,. Also §" extends partly into £, so that there is a
small overlap region of 2% and Q,, i.e., Area (2% N Q,) #0. The theoretical analysis
in [13-157] shows that such an overlap does not cause a reduced convergence rate
of numerical solutions. Therefore we do not need to use the complicated,
isoparametic elements in coupling two kinds of subspaces along a curved common
boundary /g..

Based on (2.29) admissible functions can be chosen as

(D) isfvi in OF
U={v satlsfymg (2.1d), in £, (3.1)

v, =X oD L(r)/1,(R))4,(0), in

where v(l” are piecewise linear interpolation polynomials on the triangulation
domain @/ of 2,, and D, are coefficients to be calculated. Note that 5"’ in (3.1) can
satisfy (2.1d) exactly if g(x, y) is a linear function with respect to x and y;
otherwise, similar error analysis can be found in Strang and Fix [19].

In addition, the admissibie functions v in (3.1) are also required to satisfy the
continuity conditions at the element nodes P;(R*, §;) on the common boundary /z.
(r=R*):

I,(R*)

; 1.8 on /g.. 3.2)

5O(R*, 0,) = i Ly 0), VP

J

It is noted from (3.2) that this approach is nonconforming because the admissible
functions chosen are not continuous on the whole common boundary /..

Now, we give the definitions of the function spaces ¥} and V,,. Let V,, denote the
space of v in (3.1) with the constraint conditions (3.2), and ¥, denote the space of
the functions

(1) isfving 5. =
we {v but satisfying #'"|;, =0, (33)

Up,

with (3.2).
Therefore, the combination of the Ritz—Galerkin and finite element methods is
designed to find an approximate solution u} € V, such that

B(uf,v)=0, VveV?9, (3.4)
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where the bilinear form is

B(u,v)= ”ﬂ - pH(uo, +u,v,+uv)d?
M

+H p (uv,+u,v,+uv)dQ

212~ o0

+” pr(uv. +u,v,+uv)dQ
Q'I'ﬁﬂ* o ey

+ﬂﬁfﬁg_ p(uv +u,v, +uv)dQ, (3.5)

where Q* and Q- are defined in Eqgs. (2.1) shown in Fig. 1.
After elimination of the unknown #‘')(R*, 6)) in (3.4) by the constraints (3.2), we
obtain a linear system of algebraic equations

Tx=b, (3.6)

where x is the unknown vector with the components D, and 5)(r,, 8,) (r;> R*), b
is a known vector, and the coefficient matrix T is positive definite, symmetric, and
sparse. Consequently, the solutions x (i.e., ¥) in (3.6) can be easily solved by the
direct methods in Birkhoff and Lynch [5].

4. ERROR ESTIMATES AND COUPLING STRATEGY

Define a norm over V§:

ol = (ol g+ vl e, (4.1)
where |||, o, is the Sobolev norm [18]. Then we have by following the work of
[14, 15]:

THEOREM 1. Let
R*<R (4.2)
and
ue H¥Q,), (4.3)

and suppose that the family of triangular elements with the maximal boundary length
h in Q% is quasi-uniform. Then there exists a bounded constant C independent of h, L,
and u such that

lu—uflln < C{h+ IR .| o, + 1A%}, (44)
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where §, is a disk (r < R,) with
R*<R,<R, (45)

the remainder R, is

zp

i=L+1

$,.(0) (4.6)

)
with the expansion coefficients D, defined by (2.31).

Below, we shall further estimate bounds of |R.[, 4,

LEMMA 1. There exists a bounded constant C independent of u such that

1,(r) r\
I(R)<C<R)’ Vu>0. (4.7)

m

Proof. We have from (2.3b)

_ o
ae T (r)y<a,ert,

with the constant a, defined by (2.28). It then follows that

I(r) Rar “_ r #
LR S )<R> ‘C<R)

with C=e®*". This completes the proof of Lemma 1.

LEMMA 2. Let (4.3) hold, there then exists a constant C independent of u; such

that
|D;| < Clu;

for all u;>0, where the coefficients D, are defined by (2.31).

Proof. The eigenfunctions ¢,(6) of the Sturm-Liouville system discussed in
Section 2 are complete and orthogonal:

[ maoson={ 7 )
where f§; are positive constants such that
B.<C<co. (4.9)
Define the functions
- 0
{5 wsen (410

Y,(0)= ———¢,‘,( ) (4.11)
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where ¢, (0) are the eigenfunctions of the Sturm-Liouville system. Since

d*¢,(0

L0 _ 24,00, “12)
we have

1 d

. T =¢,(0). (4.13)

By noting (2.31), (4.11), and (4.13), and the condition u:>0, we obtain from
integration by parts

1 2=
D=g [, pur0)9,(0) a6

ﬁi pu(R, 0) i, (0) d

AT T

—r Ggtn(5370) (2 3)
*[P‘%ﬂ’w(-?”) (-39
=[P RO @ (4.14)

Because the eigenfunctions ¢,(6) satisfy the normal flux continyity condition
across the interfaces (see (2.1¢)), the coefficients are reduced to

2n
D=-¢ #lf P35 (R.0)¥,(60)d (4.15)
Therefore, using the Sobolev imbedding theorem and assumption (4.3) gives
C C C "
D] < Iu|1 ’“<;t_, )0, < 7 (4.16)

with the bounded constants C, C’, and C”, independent of y, (>0). This completes
the proof of Lemma 2.

LEMMA 3. When the conditions in Theorem 1 hold true, then

R HL+1
nRLul,ﬁzsLG) . @17)

VHL+1 R

581/80/2-4
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Proof. The family of y,(6) defined by (4.11) are also orthogonal:

2n 2 0’ l#_},
J, P00, 0) 0= [ po, 08,00 0= AR
As a result of this orthogonality, we have
R /OR, R\,
HRL”lQ; f f l:( 0r) <m) +Rj; |rdrdf
L1, (r)]2+[1+(u/r ]IZ(V)l
- Y D Bzf ! Oy ar, (4.19)
i=L+1 ( 1 (K)
Since the bounds of I, (r) can be found from (2.3b):
) U
I(n< <7+ 1> 1,(r), (4.20)
we obtain the integration bounds by Lemma 1:
R ([5, (1) T2+ 11+ (p/r)*] If,-(r)} Ry\*
i i < A= R .
L { R rdr < Cu (R (4.21)
Consequently, we have from Lemma 2 and bounded constants §,
1 [R\M
R, 24 <C — —2)
IR.] L i=;+1 u; ( R
1 R \2#L+1 R\~ s+
<C (—2) (-3) : (4.22)
Brsy \ R i———;-rl R
The eigenvalues p; of the Sturm-Liouville system satisfy
Omin = min |p;— ;| 26 >0, (4.23)
Hi# 1

where & is a constant independent of i Also the eigenvalues, corresponding
symmetric (or antisymmetric) eigenfunctions, differ from each other. Then

24 +1 ©
R2> Y ab, (4.24)

C
RNZAs <—| =2
“ L”LQZ\#L+1<R

where the constants a,=(R,/R)*". Noting assumption (4.2) and R* <R, <R,
then the constant a, < 1. The desired result (4.17) is obtained; this completes the
proof of Lemma 3.

i=L+1

From Theorem 1 and Lemma 3, we have
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THEOREM 2. Let all conditions in Theorem 1 hold true, then

1 R2 HL+1
||u—u,’,“||,,<C{h+ (—) +uih2}‘ (4.25)
VHL+1 R
Assume that all eigenvalues u,, satisfy
1. <C*n+C, (4.26)

where the positive constants C* and C are independent of . Then the error bounds
(4.25) become

R C*(L+1)
lu—uk|,<C {h + (f) + Lzhz}. (4.27)
Clearly, when
R2 C*(L+1)
—= =Ch, 428
<R> o
we have
lu—uill,< Ch. (4.29)

This important conclusion is now written in a corollary:

COROLLARY. Suppose that (4.26) and all conditions in Theorem 1 hold true. Then
there exist error bounds (4.29) provided that Eq. (4.28) is satisfied.

Equation (4.28) gives the coupling relation between L + 1 and 4:

InC+Inh

Ltl=—1r——. .30
T = T IRR) (4.30)
While 4 — 0, we have a significant asymptotic relation
L+1=0(/Inh|). (4.31)
A useful formula is also derived from (4.30):
|In (A'/h)|
Ly+t=(L,+ )+ ———""— .
wt1=(Ly+ )+C*|ln(R2/R)|’ (4.32)
where the notation is
InC+inh
L+l=——r— .
» T = CFIn(R/R)’ (4.33)

with respect to a fixed h. Therefore, if a suitable total number L, + 1 of particular



302 ZI-CAI LI

solutions used has been known, we may anticipate, directly from (4.32), another
suitable total number L, + 1 for a new triangulation with a smaller &' ( < k).
Take Fig. 2 as an example where © = n/2. It follows from (2.16) to (2.20) that

U, <n, (4.34)

ie, C*=1 in assumption (4.26). Then coupling relations (4.30) and (4.32) yield

InC+Inh
and
_ |In(A’/h)|
Lyt 1= Lyt )+ s (4.36)

In particular, let R=14 and R* =14, ie, R*= R/2. While R, - R*, we obtain from
(4.36)

L+ 1~ (L,+1)+1. (4.37)

This means that only, almost, one more particular solution in £, is required when
all boundary lengths of triangular elements in 2, proportionally decrease to their
halves. This clearly shows great advantages of the coupling strategy stated above.

5. NUMERICAL EXPERIMENTS

We consider the model problem (2.1) only on the solution domain as Fig. 2 with
the exterior boundary condition

u=1 on 0Q. (5.1)

u =0
N

FiG. 4. One eighth of the solution domain in Fig. 2.
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F1G. 5. A division on one eighth of the solution domain € for the combined method.

Because of the model’s symmetry, it suffices to solve one eighth of the solution
domain € (see Fig.4). So the corresponding division is given in Fig. 5 where the
common boundary is a semicircle /z. (r=R*, 0<0<n).

Let M and N be the numbers of elements on the sections A0 and OG in Fig. 5,
and M = N =2 for the case of Fig. 5. Also let 4M be the number of elements along
the common boundary /... Then

h=0(1/M). (5.2)

The nonconforming combinations (3.4) are used for solving this interface
problem with the admissible functions (3.1), where R=3. Because the model is
symmetric to the axis § =0, we only need the symmetric functions ¢,(6): Kellogg’s

TABLE I

Error Norms and Condition Numbers by the Nonconforming Combination
forp~=1, p* =02, R=0.5 R*=0.25, and M = N=2 While Increasing L +1

L+1 18 1 o1 el lelo,0 lel Con. Num.

2 0.1748 x 10! 04181 x 102 0.2063 x 102 0.2554x 1071 105.8

3 0.2315x 102 0.6137 x 102 0.8004 x 103 0.1852x 107! 106.3

4 0.9951x 103 0.3595x 103 0.7770x 1073 0.1824 x 10! 106.4

5 0.1287x 102 04421 x1073 0.7661 x 103 0.1813x 107! 203.3

6 0.1302 x 102 04416 x 1073 0.7665 x 103 0.1813x 10! 203.3

8 0.1228 x 102 04454 x 1073 0.7647 x 1073 0.1812x 10! 2512

10 0.1212x 10?2 0.4450 x 103 0.7646 x 103 0.1812x 10! 30485
12 0.1220 x 102 0.4442 x 103 0.7644 x 103 0.1812x 10! 0.7836 x 10°
14 0.1470 x 102 0.4394 x 103 0.7628 x 103 0.1813x 10! 0.9098 x 107

16 0.1629 x 10! 03299 x 102 0.1042 x 102 0.2784x 10! 0.1807 x 10°
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functions (2.4) with (2.16) and the additional functions (2.18) and (2.19). In terms
of true coefficients D; (i=0, 1, ..., 25) given by the boundary methods [15, 16], we
can compute true errors of numerical solutions obtained.

Besides, in order to discuss the stability of the nonconforming combinations, we
evaluate condition numbers of the coefficient matrix T in (3.6):

j‘max(T)

Con. Num. = 7 (1)’

(5.3)

where A.,.,.(7) and An;,(7) are the maximal and minimal eigenvalues of T, respec-
tively. A theoretical analysis on the condition numbers has been done in Li
[14, 15]; but this paper will first provide their numerical experiments.

We shall analyze true errors of numerical solutions and condition numbers in the
following four aspects. In the first three aspects, we let p~ =1 and p* =0.2 as in
Strang and Fix [19] where the constant is «* =0.7836531 from (2.17). In the fourth
aspect, we shall change the values of p* while p~ = 1.

1. For the division in Fig. 5 where R* =} and M = N =2, we have calculated
error norms and condition numbers shown in Table I, while (L + 1) increases. All
numerical results given in this section are, with double precision, calculated by a
computer of the University of Toronto. For data in tables of the error norms
lelo@s lle* 1o, > € al, the solution domain Q is regarded as in Fig. 5 (ie., one
eighth of that in Fig. 2), and /. is a semi-circle (r=R*, 0<0<n).

It is seen from Table I that the differences of the error norms |¢|, are very slight
when 4 < L+ 1< 12, and that the condition numbers are small when L + 1< 6. We
notice that when L+ 1 increases, the condition numbers increase very quickly.
Therefore, the total number of particular solutions must be chosen small, more

TABLE III

Error Norms and Condition Numbers by the Nonconforming Combinations
forp==1, p* =02, R=05, and R*=0.25

Division et | o, tpe e [lo, e llello, el 4 Con. Num.
N;ﬁ :i 09951x10->  03595x 10~  07770x 10~  0.1824x 10~ 106.4
N=M=3 —3 _3 -3 -1

La1_s 0s814x10 0.1985 x 10 0.3363 x 10 0.1202 x 10 2439
N;ﬁ:‘s‘ 0.3358x 1072  0.1132x 1073 0.1914x10~* 09007 x 10~} 455.3
N=M=6 -3 —4 -4 -2

Liloe 01588x10 0.5030 x 10 0.9203 x 10 0.6020 x 10 1152
N=M=38

L+1=6 0.8883x 107¢  0.2841x107* 0.5047x10~* 0.4537x 1072 2518
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importantly from the stability’s point of view. A comparison of approximate
coefficients with true coefficients in [15] has also been made in Table I1.

2. Let the division of 2, in Fig. 5 be finer by increasing the numbers M and
N, ie., by decreasing A. On the basis of the coupling relation (4.37), we may
increase one more particular solution in €2,, while the numbers M and N of divi-
sions increase to their doubles. For example, considering that L+ 1=4 is a good
choice for M = N =2 because of a minimal calculation work and a small condition
number (see Table I), we can simply choose L+ 1=5for M=N=4,and L+1=6
for M = N=8. The error norms and condition numbers have been calculated and
shown in Table III, while the number M increases with N = M. The curves of error
norms and condition numbers versus M ( = N) have been depicted in Figs. 6-8.

elly| lelg
0.05 = \

\ueno,ﬂ
0.025 p=

0.005 =~

0.0025 M

FIG. 6. The curves of the error norms, {¢ll, and Jello o, vs M with N= M.
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I s*nm,gR*

+
1",

5x1074 =

2.5x107% f=

+
1€,

+
e
Ole*
1x1074 =
5%107° = \\

2.5x10°5 I ] 1 I y

o(h 8y

FiG. 7. The curves of the error norms, J|&*|l,,. and Je* | ;,., v M with N=M.

Since h = O(1/M), we can see from Figs. 6-8 that the error norms and condition
numbers satisfy asymptotic formulae:

llell» = O(h), (3.4)
lllo,o = O(h?), (5.5)
le* o, 10 = O(H?), (5.6)

18 oo, 1. = O(R?~2), (5.7)
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Con. Num.

2500

1000

500}—

250

100

Fic. 8. The curve of the condition numbers vs M with N=M.

and

Con. Num = O(h~2?), (5.8)

where e=u—uj, ¢ =¢|g,, and ¢ is an arbitrarily small positive number.

Clearly, the asymptotic formulas (5.4)-(5.7) are the same as those in the finite
element method [2,3,5,6,17,19]. Moreover, the asymptotic expression (5.4)
coincides with the corollary in Section4 concerning the coupling strategy.
Equations (5.6) and (5.7) also imply that the errors of numerical solutions are small
even on /5. where the admissible functions are not always continuous.

Equation (5.8) shows that when % — 0, the condition numbers of T increase a
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TABLE IV

Calculated Coeﬂ'lcieﬁts by the Nonconforming Combination for
p =1,p7=02 R=05, and R*=025

M(=N) L+1 b, D, b, D, D,
2 4 0.7010658 —0.1141826 —0.0127701 0.0064463 —
3 5 0.7008395 —-0.1144877 —0.0128381 0.0060110 —0.00745%0
4 5 0.7007581 —0.1146103 —0.0128630 0.0058936 —0.0055113
6 6 0.7007021 —0.1147023 —0.0128808 0.0058239 —0.0041104
8 6 0.7006829 -0.1147354 —0.0128868 0.0058025 —0.0036160

True coefficients

[15] 0.7006584 —0.1147786 —0.0128943 0.0057785 —0.0029746

little faster than O(k~?) in the standard finite element method [19]. Therefore, the
stability of the nonconforming combinations are almost as good as that of the finite
element method if the coupling strategy in this paper is employed.

In addition, we have computed the errors of calculated coefficients in Table IV.
Denote

8D,=|D,—D|, 1=0,1,23, (5.9)
and depict their error curves in Fig. 9. It appears to exist asymptotic relations
0D, = O(h?), 8D, = O(h?). (5.10)

It is noteworthy that only the six basis functions in Q, are required for coupling
the finest division in 9%, ie., M =8. The first two basis functions of u in 2, are
given by

$o(0)+ -,  r<R=3}, (5.11)

where o* = 0.7836531. The values of D, and D, are obtained,
D,=07006829, D, = —0.1147354,

with small relative errors 0.000035 and 0.0004, respectively. The second coefficient
D, is more important because the corresponding basis function

L,s(r)

D,
.(R)

¢a“(0)

a

is a principal part of the singular solutions, with u =~ O((r/R)*") as r - 0.

3. Calculations have been done for increasing the radius R* of the singular
domain 2,, shown in Table V. When R* — R ( =1), the values of |¢|, decrease a
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2,500 |-

11074 |-
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FiG. 9. The curves of relative errors of calculated coefficients vs M with N = M.
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TABLE V

Error Norms and Condition Numbers for p~ =1, p* =0.2, R=0.5,
and N =4 While Increasing R*

311

L . Con. Unknown
Divisions e N oo e e o, rg- lello. @ llell s Num. Num.
R*=0.25 0.3358x 1073 0.1132x107% 0.1914x 1073 09007 x 102 4553 64
M=4,L+1=5 = ' ’ ' '
R*=0.3125 ~3 -3 -3 -2
M=3L+1=6 0.3873x 10 0.1113x 10 0.1874 x 10 0.9081 x 10 394.8 48
R*=0375 0.5751 x10~% 0.1598x10~% 0.2217x10~> 09603 x10-2 508.6 31
M=2L+1=6 ’ ' ’ ’ ’
R*=0.4375 3 _3 -3 -2
M=2L+1=6 0.5103x 10 0.1402 x 10 0.1443 x 10 0.7323x 10 1276 31
R*=0475 04351 x1073 0.1483x 1073 0.1273x 1073 0.6195x10-2 3659 32
M=2L+1=7 ’ : : ;
TABLE VI
Error Norms and Condition Numbers When R=0.5, R*=0.25, L+ 1 =5,
M=N=4and p~ =1 for Different p*
P fexl 0, lge fle* ||0,1,,. lello.e el » Con. Num.
100 0.3071x 1073 0.1298 x 102 0.2772x 1072 0.1279 13184
10 0.2973x 1073 04103x 103 0.8800x 103 0.4073x 10! 1275
1 0.2782x 1073 0.1432x 1073 0.2972x 1073 0.1409 x 10! 315
0.2 0.3558 x 10~3 0.1132x 1073 0.1914x 1073 0.9007 x 102 455
0.04 0.4079 x 103 0.8904 x 104 0.1181x 1073 0.6525x 102 2491
0.008 0.6484 x 103 0.3905x 10~* 0.5277 x 10~* 0.3631x 102 31628
TABLE VII
Calculated Coefficients When R=0.5, R*=0.25, L+1=35,
M=N=4, and p~ =1 for Different p*
Pt a* D, D, D, D, b,
100 1.3260788 0.9597324 —0.0917904 —0.0722960 0.0495255 —0.0077871
10 1.2683082 0.9546098 —0.0973639 —0.0601767 0.0404860 —0.0076972
1 1.0 0.9011589 —0.1182058 —0.0277571 0.0160052 —0.0070652
0.2 0.7836531 0.7007582 —-0.1146103  —-0.0128630 0.0058936 —0.0051131
0.04 0.6945953 0.3224818 —0.0586203  —0.0047703 0.0019269 —0.0026008
0.008 0.6724856 0.0867451 -0.0162162 —0.0012146 0.0004748 —0.0007068
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TABLE VIII

Relative Errors 8C,=(D/D,—1) with R=0.5, R* =025, L+1=5 M =N=4,
p~ =1, and Different p*, Where the Coefficients D, as [15]

Pt 5C, 5C, 5C, 8¢, 5C,
100 0.0000560 0.000769 —0.000651 0.01788 0.8077
10 0.0000521 0.000185 ~0.000818 0.01980 0.8162
1 0.0000444 —0.001237 —0.001719 0.02708 0.8565
02 0.0001424 —0.001466 —0.002429 0.01991 0.8528

0.04 0.0004026 —0.001196 ~0.002492 0.004806 0.8181
0.008 0.0005725 ~0.001011 —0.002399 —0.000998 0.8046

little; but the values of Con. Num. increase substantially. Then, we may choose a
properly larger radius R* (e.g., R*=0.375) than R*=0.25 for saving calculation
work.

4. We have also investigated the influence of different p* upon error norms,
coefficient errors and condition numbers, and shown in Tables VI-VIII.

It can be found from Table VI that the condition number is smallest at
p* =p~ =1, the case without singularity, and that the condition number is large
when p* is either large or small.

Another interesting fact is shown in Table VI that the error norms |¢||, et al. for
p* > p~ are larger than those for p* < p~. Also the larger p* is, the larger the
error norms |¢||, et al. are. We notice that when p* > p~, the value o«* > 1 holds
true for the symmetric eigenfunctions. So u € H*(2), and the finite element method
using the space of piecewise linear functions is still available for the whole solution
domain Q because a good approximate solution with the error norms |||, o = O(h)
can also be obtained.

However, when p* < p~, the value a* <1 results from (2.17). Hence the linear
element method has a reduced convergence rate in solving the model problem (2.1).
It is just in the case p* < p~ that the error norms of solutions by combinations are
even smaller (see Table VI). Consequently, we recommend that the nonconforming
combination of Ritz—Galerkin and finite element methods with the coupling
strategy (4.32) be used for the model interface problem (2.1) in Fig. 2 when
p*t < p~, and for other interface problems when the conventional finite element
method or finite difference method has a reduced convergence rate.
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